RAS Earth ScienceЛёд и Снег Ice and Snow

  • ISSN (Print) 2076-6734
  • ISSN (Online) 2412-3765

Experiments on the application of the infrasound method of remote monitoring of snow avalanches in the Khibiny Mountains

PII
S2076673425010064-1
DOI
10.31857/S2076673425010064
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 65 / Issue number 1
Pages
81-92
Abstract
Visual slope observations are still the main method of avalanche detection. As a result, avalanche statistics, especially in remote mountain areas, remain incomplete. Like earthquake forecasting, the avalanche prognosis is a complex task that requires a complete set of data on avalanche activity in the region and meteorological observations. To begin this process, it is necessary to create a remote all-weather automated avalanche monitoring system. The Kola Branch of the Geophysical Service of the Russian Academy of Sciences initiated developing a hardware and software package for the avalanche monitoring. The main function of this complex is the registration of seismic and infrasound signals. Over the last five years, a series of experiments have been conducted in the Khibiny Mountains aimed at registration of forced avalanche releases carried out by the avalanche safety service. During the experiments, signals produced by avalanches were recorded using a broadband seismometer and an array of three low-frequency microphones installed at varying distances from an avalanche source. The results obtained demonstrated the high recording capability of the infrasound method, but also revealed problems associated with the use of the seismic method. Technical solutions have been found and prototypes of software for automated detection of target signals have been created. Thus, the experimental complex to monitor avalanche activity in the Khibiny Mountains has been established. The operation of the complex has shown that infrasound signals generated by the movement of snow mass on the mountain slope allow detecting avalanches with a volume of about 5 thousand m3 at a distance of 7 km. The smallest recorded avalanche had a volume of 0.5 thousand m3 and was located in 2.5 km away from the station.
Keywords
снежные лавины инфразвук мониторинг Хибины
Date of publication
18.09.2025
Year of publication
2025
Number of purchasers
0
Views
17

References

  1. 1. Асминг В.Э., Федоров А.В., Виноградов Ю.А., Чебров Д.В., Баранов С.В., Федоров И.С. Быстрый детектор инфразвуковых событий и его применение // Геофизические исследования. 2021. Т. 22. № 1. С. 54–67. https://doi.org/10.21455/gr2021.1-4
  2. 2. Викулина М.А. Оценка лавинного риска в Хибинах // ИнтерКарто/ИнтерГИС. 2019. Т. 25. № 2. С. 66–76.
  3. 3. Мягков С.М. География лавин / Ред. С.М. Мягкова, Л.А. Канаева. М.: Изд-во МГУ, 1992. 331 с.
  4. 4. Пильгаев С.В., Черноус П.А., Филатов М.В., Ларченко А.В., Федоренко Ю.В. Комплекс лавинно-обвальной сигнализации // Тр. Кольского науч. центра РАН. 2016. № 4–2 (38). С. 98–101.
  5. 5. Тимофеев В.Г. Снежно-метеорологическая служба Хибин / Ред. В.Г. Тимофеев. М.: Изд-во АИРО-XXI, 2017. 352 с.
  6. 6. Федоров А.В., Федоров И.С., Воронин А.И., Асминг В.Э. Мобильный комплекс инфразвуковой регистрации снежных лавин: общий принцип построения и результаты применения // Сейсмические приборы. 2021. Т. 57. № 1. С. 5–15. https://doi.org/10.21455/si2021.1-1
  7. 7. Фирстов П.П., Суханов А.А., Пергамент В.Х. Радионовский М.В. Акустические и сейсмические сигналы от снежных лавин // Докл. АН СССР. 1990. Т. 312. № 1. С. 67–71.
  8. 8. Шмелев В.А. Система безопасности движения на горных участках // Путь и путевое хозяйство. Москва: Российские железные дороги, 2011. № 1. С. 17–18.
  9. 9. Bedard A. Detection of Avalanches Using Atmospheric Infrasound // Proc. Western Snow Conference. Fort Collins, 1989. P. 52–58.
  10. 10. Biescas B., Dufour F., Furdada G., Khazaradze G., Suriñach E. Frequency content evolution of snow avalanche seismic signals // Surveys in Geophysics. 2003. V. 24. P. 447–464.
  11. 11. Comey R., Mendenhall T. Recent Studies Using Infrasound Sensors to Remotely Monitor Avalanche Activity // Proceedings, International Snow Science Workshop. Wyoming, 2004. P. 640–646.
  12. 12. Gauer P., Kern M., Kristensen K., Lied K., Rammer L., Schreiber H. On pulsed Doppler radar measurements of avalanches and their implication to avalanche dynamics // Cold Regions Science and Technology. 2007. V. 50. P. 55–71. https://doi.org/10.1016/j.coldregions.2007.03.009
  13. 13. Heck H., Hobiger M., van Herwijnen A., Schweizer J., Fah D. Localization of seismic events produced by avalanches using multiple signal classification // Geophys. Journ. International. 2017. V. 216 (1). P. 201–217. https://doi.org/10.1093/gji/ggy394
  14. 14. Lacroix P., Grasso J.-R., Roulle J., Giraud G., Goetz D., Morin S., Helmstetter A. Monitoring of snow avalanches using a seismic array: Location, speed estimation, and relationships to meteorological variables // Journ. of Geophys. Research. 2012. V. 117. F01034. https://doi.org/10.1029/2011JF002106
  15. 15. Marchetti E., Ripepe M., Ulivieri G., Kogelnig A. Infrasound array criteria for automatic detection and front velocity estimation of snow avalanches: towards a real-time early-warning system // Natural Hazards and Earth System Sciences 2015. V. 15. P. 2709–2737. https://doi.org/10.5194/nhess-15-2545-2015
  16. 16. Marchetti E., van Herwijnen A., Christen M., Silengo M.C., Barfucci G. Seismo-acoustic energy partitioning of a powder snow avalanche // Earth Surface Dynamics. 2020. V. 8. P. 399–411. https://doi.org/10.5194/esurf-8-399-2020
  17. 17. Mayer S., Van Herwijnen A., Ulivieri G., Schweizer J. Evaluating the performance of an operational infrasound avalanche detection system at three locations in the Swiss Alps during two winter seasons // Cold Regions Science and Technology. 2020. V. 173. 102962. https://doi.org/10.1016/j.coldregions.2019.102962
  18. 18. McClung D., Schaerer P. The Avalanche Handbook. Washington, U.S.A.: The Mountaineers Books, 2006. 342 p.
  19. 19. Michael A., Hedlin H., Alcoverro B., D’Spain G. Evaluation of rosette infrasonic noise-reducing spatial filters // Journ. of Acoustic Society Amer. 2003. V. 114 (4). P. 1807–1820. https://doi.org/10.1121/1.1603763
  20. 20. Pérez-Guillén C., Sovilla B., E. Suriñach E., Tapia M., Köhler A. Deducing avalanche size and flow regimes from seismic measurements // Cold Regions Science and Technology. 2016. V. 121. P. 25–41.
  21. 21. Prokop A., Schön P., Wirbel A., Jungmayr M. Monitoring avalanche activity using distributed acoustic fiber optic sensing // Proc., International Snow Science Workshop. Banff, 2014. P. 129–133.
  22. 22. Schimmel A., Hubl J., Koschuch R., Reiweger I. Automatic detection of avalanches: evaluation of three different approaches // Natural Hazards. 2017. V. 87. P. 83–102.https://doi.org/10.1007/s11069-017-2754-1
  23. 23. Scott E.D, Hayward C.T, Kubicheck R., Hammon J., Pierre J., Comey B., Mendenhall T. Single and Multiple Sensor Identification of Avalanche Generated Infrasound // Cold Regions Science and Technology. 2007. V. 47. P. 159–170. https://doi.org/10.1016/j.coldregions.2006.08.005
  24. 24. Steinkogler W., Ulivieri G., Vezzosi S., Hendrikx J., van Herwijnen A., Humstad T. Infrasound Detection of Avalanches: operational experience from 28 combined winter seasons and future developments // Proc. of the 2018 International Snow Science Workshop. Austria, 2018. P. 621–626. https://doi.org/10.1016/j.coldregions.2015.10.004
  25. 25. van Herwijnen A., Schweizer J. Monitoring avalanche activity using a seismic sensor // Cold Regions Science and Technology. 2011. V. 69. P. 165–176. https://doi.org/10.1016/j.coldregions.2011.06.008
  26. 26. Vilajosana I., Khazaradze G., Surinach E., Lied E., Kristensen K. Snow avalanche speed determination using seismic methods // Cold Regions Science and Technology. 2007. V. 49. P. 2–10. https://doi.org/10.1016/j.coldregions.2006.09.007
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library