RAS Earth ScienceЛёд и Снег Ice and Snow

  • ISSN (Print) 2076-6734
  • ISSN (Online) 2412-3765

Meteorological conditions and avalanche danger of winters in the Caucasus at the end of the 21st century based on the results of CMIP6 models

PII
S2076673425010082-1
DOI
10.31857/S2076673425010082
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 65 / Issue number 1
Pages
103-119
Abstract
The paper considers a forecast of avalanche danger in the Caucasus at the end of the 21st century based on the climatic avalanche indicator criterion developed at Moscow State University, using the results of the CMIP6 Earth System Models (ESM). The quality of models’ estimates of modern winter climate in the Caucasus has been evaluated. The best models were selected, for which the average temperature error is –0.6 °C, precipitation error is 10%. According to these models’ data, by the end of the XXI century the average winter air temperature in the Caucasus will be 4–6 °C higher than the present one, and the precipitation sum will exceed the modern value by 25%. The frequency of seasons with extreme moisture will increase 2–3 times (monthly precipitation more than 100 mm). The seasonal maximum precipitation at the end of the 21st century will shift to March, while extremely dangerous avalanche winters are usually accompanied by a January maximum precipitation with a significant negative temperature anomaly. Experiments were also conducted with the numerical model SNOWPACK, which showed that despite the positive precipitation anomaly and the possible occurrence of cold winters, the most typical situation by the end of the 21st century will be the formation of a homogeneous snow column with low density, or heavily watered snow cover. Both situations are not avalanche-prone. Therefore, the background forecast of avalanche danger for the years 2071–2100 can be formulated as follows: a significant decrease in the frequency of the most destructive large avalanches from dry snow in high-mountain areas and their disappearance in mid-mountain areas, and a tendency to an increase in the number of less dangerous avalanches from loose and wet snow.
Keywords
модели CMIP6 климатический прогноз лавинная опасность метеорологические условия формирования лавин модель Snowpack
Date of publication
18.09.2025
Year of publication
2025
Number of purchasers
0
Views
15

References

  1. 1. Благовещенский В.П. Определение лавинных нагрузок. Алма-Ата: «Гылым», 1991. 116 с.
  2. 2. Глазовская Т.Г., Трошкина Е.С. Влияние глобального изменения климата на лавинный режим на территории бывшего Советского Союза // Материалы гляциологических исследований. 1998. № 84. С. 88–91.
  3. 3. Жданов В.В. Экспериментальный метод прогноза лавин на основе нейронных сетей // Лёд и Снег. 2016. Т. 56. № 4. С. 502–510.
  4. 4. Куксова Н.Е., Торопов П.А., Олейников А.Д. Метеорологические условия экстремального лавинообразования в горах Кавказа по данным наблюдений и реанализов // Лёд и Снег. 2021. Т. 61. № 3. С. 377–390.
  5. 5. Олейников А.Д., Володичева Н.А., Бояршинов А.В. Снежность зим и лавинная деятельность на Большом Кавказе за период инструментальных наблюдений // Материалы гляциологических исследований. 2000. № 88. С. 74–83.
  6. 6. Олейников А.Д., Володичева Н.А. Экстремальные зимы XX–XXI вв. как индикаторы снежности и лавинной опасности в условиях прошлого и прогнозируемого изменений климата // Лёд и Снег. 2012. № 3 (119). С. 52–57.
  7. 7. Олейников А.Д., Володичева Н.А. Зимы лавинного максимума на Большом Кавказе за период инструментальных наблюдений (1968–2016 гг.) // Лёд и Снег. 2020. Т. 60. № 4. С. 521–532.
  8. 8. Олейников А.Д. Районы максимальной интенсивности лавинообразования на Большом Кавказе при крупных аномалиях температурно-влажностного режима // Лёд и Снег. 2024. Т. 64. № 2. С. 221–230.
  9. 9. Семенов В.А. Связь аномально холодных зимних режимов на территории России с уменьшением площади морских льдов в Баренцевом море // Известия РАН. Физика атмосферы и океана. 2016. Т. 52. № 3. С. 257–266.
  10. 10. Торопов П.А. Оценка качества воспроизведения моделями общей циркуляции атмосферы климата Восточно-Европейской равнины // Метеорология и гидрология. 2005. № 5. С. 5–21.
  11. 11. Aleshina M.A., Semenov V.A., Chernokulsky A.V. A link between surface air temperature and extreme precipitation over Russia from station and reanalysis data // Environmental Research Letters. 2021. V. 16. № 10. P. 105004.
  12. 12. Chernokulsky A., Kozlov F., Zolina O., Bulygina O., Mokhov I., Semenov V. Observed changes in convective and stratiform precipitation in northern Eurasia over the last five decades // Environmental Research Letters. 2019. Vol. 14. P. 045001.
  13. 13. Christen M., Kowalski J., Bartelt P. RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain // Cold Regions Science and Technology. 2010. № 1–2 (63). P. 1–14.
  14. 14. Flato G., Marotzke J., Abiodun B., Braconnot P., Chou S.C., Collins W., Cox P., Driouech F., Emori S., Eyring V., Forest C., Gleckler P., Guilyardi E., Jakob C., Kattsov V., Reason C., Rummukainen M. Evaluation of climate models. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2013. P. 741–882. https://doi.org/110.1017/CBO9781107415324.020
  15. 15. Glazovskaya T.G. Global distribution of snow avalanches and changing activity in the Northern Hemisphere due to climate change // Annals of Glaciology. 1998. V. 26. P. 337–342.
  16. 16. Glazovskaya T.G., Seliverstov Y.G. Long-term forecasting of changes of snowiness and avalanche activity in the world due to the global warming // Publikasjon – Norges Geotekniske Institutt. 1998. № 203. P. 113–116.
  17. 17. Jia K., Ruan Y., Yang Y., Zhang C. Assessing the Performance of CMIP5 Global Climate Models for Simulating Future Precipitation Change in the Tibetan Plateau // Water. 2019. № 9 (11). P. 1771.
  18. 18. Lehning M., Fierz C., Lundy C. An objective snow profile comparison method and its application to SNOWPACK // Cold Regions Science and Technology. 2001. P. 253–261.
  19. 19. Lenderink G., Van Meijgaard E. Increase in hourly precipitation extremes beyond expectations from temperature changes // Nature Geoscience. 2008. V. 1. No. 8. P. 511–514.
  20. 20. Meredith E.P., Semenov V.A., Maraun D., Park W., and Chernokulsky A.V. Crucial role of Black Sea warming in amplifying the 2012 Krymsk precipitation extreme // Nature Geoscience. 2015. Vol. 8. No. 8. P. 615–619.
  21. 21. Min S.K., Zhang X., Zwiers F.W., Hegerl G.C. Human contribution to more intense precipitation extremes // Nature. 2011. V. 470. No. 7334. P. 378–381.
  22. 22. Ortner G., Michel A., Spieler M.B.A., Christen M., Bühler Y., Bründl M., Bresch D.N. A novel approach for bridging the gap between climate change scenarios and avalanche hazard indication mapping // Cold Regions Science and Technology. 2025. V. 230. P. 104355.
  23. 23. Reynolds R.W., Smith T.M., Liu C., Chelton D.B., Casey K.S., Schlax M.G. Daily high-resolution-blended analyses for sea surface temperature // Journal of Climate. 2007. V. 20. No. 22. P. 5473–5496.
  24. 24. Su F., Duan X., Chen D., Xao Z., Cuo L. Evaluation of the Global Climate Models in the CMIP5 over the Tibetan Plateau // Journal of Climate. 2013. № 10 (26). P. 3187–3208.
  25. 25. Taylor K.E., Stouffer R.J., Meehl G.A. An Overview of CMIP5 and the Experiment Design // Bulletin of the American Meteorological Society. 2012. № 4 (93). P. 485–498.
  26. 26. Toropov P.A., Aleshina M.A., Grachev A.M. Large-scale climatic factors driving glacier recession in the Greater Caucasus, 20th–21st century // Intern. Journal of Climatology. 2019. P. 4703–4720.
  27. 27. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. In press. https://doi.org/10.1017/9781009157896
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library