RAS Earth ScienceЛёд и Снег Ice and Snow

  • ISSN (Print) 2076-6734
  • ISSN (Online) 2412-3765

GPR sounding of aufeis and alluvium of aufeis glades in the Kyubyume River valley, Oymyakon Highlands

PII
S2076673425010103-1
DOI
10.31857/S2076673425010103
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 65 / Issue number 1
Pages
135-147
Abstract
Aufeis is a surface accumulation of ice which is formed as layer-by-layer freezing of underground or river water periodically pouring onto the surface in winter. In July 2022, a geophysical survey was carried out in the valley of the Kyubyume River. The study was performed for the purpose to check a possibility to use GPR (150 and 250 MHz) for investigating internal structure of ice bodies, locations of underchannel taliks, and inferred zones of groundwater discharges, as well as revealing ice bodies in the gravel-pebble alluvium of the aufeis glade. The thickness of the aufeis amounted to 2.2 m, the geological cross-section was sounded down to depths of 4.5–8 m. Profiles were studied at right angles to the main channel of the river, including with access to the shoal of the glade. The measurement results did show that the layered ice of the aufeis is not a homogeneous medium for the GPR method, so this method may be used to study structure of the ice, and to investigate the processes of the aufeis formation. Two layers with a thickness of 1.1 m and 0.9 m were isolated in the aufeis ice, with ε = 4.1 and ε = 3.4, respectively. In the underlying alluvium, a cross bedding of the channel deposits was found that was the result of the river watercourse migration. In the sand and pebble deposits underlying the aufeis, a sub-horizontal layer was identified at depths of 2.5–3 m, which is presumably a lens of high-icy sedimentary rocks or underground ice.
Keywords
наледь наледные процессы георадар река Кюбюме
Date of publication
18.09.2025
Year of publication
2025
Number of purchasers
0
Views
15

References

  1. 1. Алексеев В.Р. Влияние наледей на развитие русловой сети (наледный руслогенез) // Лёд и Снег. 2013. Т. 53. № 4. С. 95–106.
  2. 2. Владов М.Л., Судакова М.С. Георадиолокация. От физических основ до перспективных направлений / Учебное пособие. М.: ГЕОС, 2017. 240 с.
  3. 3. Едемский Д.Е., Прокопович И.В. Применение георадилокации при выявлении зон разрывных нарушений // Электромагнитные волны и электронные системы. 2024. Т. 29. № 5. С. 14–21. https://doi.org/10.18127/j5604128-202405-03
  4. 4. Жуковский В.Е., Краюхин А.Н., Кривое С.В., Поздняк Г.В., Рябчикова В.И. Национальный атлас России. Т. 1. Общая характеристика территории // Геодезия и картография. 2007. № 11. С. 18–26.
  5. 5. Землянскова А.А., Алексеев В.Р., Шихов А.Н., Осташов А.А., Нестерова Н.В. Макарьева О.М. Многолетняя динамика гигантской Анмангындинской наледи на северо-востоке России (1962–2021 гг.) // Лёд и Cнег. 2023. Т. 63. № 1. С. 71–84. https://doi.org/10.31857/S2076673423010167
  6. 6. Иванова Л.Д., Павлова Н.А. Формирование и динамика наледей в бассейне р. Индигирки за последние шестьдесят лет // Сб. «Подземные воды востока России. Материалы Всероссийского совещания по подземным водам Востока России (XXII Совещание по подземным водам Сибири и Дальнего Востока с международным участием)». Новосибирск: Изд-во НГУ, 2018. С. 218–222.
  7. 7. Михайлов В.М. Разнообразие таликов речных долин и их систематизация // Криосфера Земли. 2010. Т. 14. № 3. С. 43–51.
  8. 8. Оленченко В.В., Макарьева О.М., Землянскова А.А., Данилов К.П., Осташов А.А., Калганов А.С., Христофоров И.И. Геофизические признаки источников гигантской наледи на р. Анмангында (Магаданская область) // Геодинамика и тектонофизика. 2023. Т. 14. № 3. С. 0702. https://doi.org/10.5800/GT-2023-14-3-0702
  9. 9. Романовский Н.Н. О геологической деятельности наледей. Мерзлотные исследования. Вып. XIII. М.: Изд-во МГУ, 1973. С. 66–89.
  10. 10. Соколов Б.Л. Наледи и речной сток. Л.: Гидрометеоиздат, 1975. 190 с.
  11. 11. Судакова М.С., Садуртдинов М.Р., Малкова Г.В., Скворцов А.Г., Царев А.М. Применение георадиолокации при комплексных геокриологических исследованиях // Криосфера Земли. 2017. Т. 21. № 3. С. 69–82. https://doi.org/10.21782/KZ1560-7496-2017-3 (69-82)
  12. 12. Федоров М.П., Федорова Л.Л. Исследование строения ледяного покрова на затороопасных участках р. Лена методом георадиолокации // Успехи современного естествознания. 2022. № 10. С. 130–135. https://doi.org/10.17513/use.37920
  13. 13. Arcone S.A., Chacho E.F., Delaney A.J. Seasonal structure of taliks beneath arctic streams determined with ground‐penetrating radar // Proc. of the 7th International Conference on Permafrost. Yellowknife, Canada, 1998. № 55. P. 19–24.
  14. 14. Arcone S.A., Prentice M.L., Delaney A.J. Stratigraphic profiling with ground‐penetrating radar in permafrost: A review of possible analogs for Mars // Journ. of Geophys. Research. Planets. 2002. V. 107. № E11. P. 5108. https://doi.org/10.1029/2002JE001906
  15. 15. Ensom T., Makarieva O., Morse P., Kane D., Alekseev V., Marsh P. The distribution and dynamics of aufeis in permafrost regions // Permafrost Periglacial Processes. 2020. V. 31. № 3. P. 383–395. https://doi.org/10.1002/ppp.2051
  16. 16. Giannopoulos A. Modelling ground penetrating radar by GprMax // Construction and building materials. 2005. V. 19. № 10. P. 755–762. https://doi.org/10.1016/j.conbuildmat.2005.06.007
  17. 17. Liu W., Fortier R., Molson J., Lemieux J.M. A conceptual model for talik dynamics and icing formation in a river floodplain in the continuous permafrost zone at Salluit, Nunavik (Quebec), Canada // Permafrost Periglacial Processes. 2021. V. 32. №. 3. P. 468–483. https://doi.org/10.1002/ppp.2111
  18. 18. Moorman B.J., Robinson S.D., Burgess M.M. Imaging periglacial conditions with ground‐penetrating radar // Permafrost Periglacial Processes. 2003. V. 14. № 4. P. 319–329. https://doi.org/10.1002/ppp.463
  19. 19. Morse P.D., Wolfe S.A. Geological and meteorological controls on icing (aufeis) dynamics (1985 to 2014) in subarctic Canada // Journ. of Geophys. Research. Earth Surface. 2015. V. 120. № 9. P. 1670–1686. https://doi.org/10.1002/2015JF003534
  20. 20. Stephani E., Drage J., Miller D., Jones B.M., Kanevskiy M. Taliks, cryopegs, and permafrost dynamics related to channel migration, Colville River Delta, Alaska // Permafrost Periglacial Processes. 2020. V. 31. № 2. P. 239–254. https://doi.org/10.1002/ppp.2046
  21. 21. Terry N., Grunewald E., Briggs M., Gooseff M., Huryn A.D., Kass M.A., Tape K.D., Hendrickson P., Lane J.W. Seasonal Subsurface Thaw Dynamics of an Aufeis Feature Inferred from Geophysical Methods // Journal of Geophys. Research. Earth Surface. 2020. V. 125. № 3. P. e2019JF005345. https://doi.org/10.1029/2019JF005345
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library