RAS Earth ScienceЛёд и Снег Ice and Snow

  • ISSN (Print) 2076-6734
  • ISSN (Online) 2412-3765

The Future Glacial Cycle and Its Reflection in the Glacial Cycles of the Late Pleistocene

PII
S24123765S2076673425020095-1
DOI
10.7868/S2412376525020095
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 65 / Issue number 2
Pages
315-326
Abstract
As a result of applying the principle of symmetry and the similarity property to the glacial cycles of the Late Pleistocene, an analogy was found in the climate dynamics of the Milankovich glacial cycles. This made it possible to outline the future glacial cycle, determine its configuration and duration.
Keywords
поздний плейстоцен ледниковые циклы Миланковича будущий ледниковый цикл принципы симметрии и подобия вейвлетный анализ
Date of publication
18.04.2025
Year of publication
2025
Number of purchasers
0
Views
30

References

  1. 1. Большаков В.А. Исследование характеристик “среднеплейстоценового перехода” с помощью сопоставления изотопно-кислородной записи LR04 с орбитально-климатической диаграммой // Доклады Академии наук. 2013. Т. 449. № 3. С. 338-341.
  2. 2. Вакуленко Н.В., Иващенко Н.Н., Котляков В.М., Сонечкин Д.M. О бифуркации умножения периода ледниковых циклов в начале плейстоцена // Доклады Академии наук. 2011. Т. 436. № 4. С. 1541-1544.
  3. 3. Вакуленко Н.В., Котляков В.М., Монин А.С., Сонечкин Д.М. Особенности календаря ледниковых циклов позднего плейстоцена // Известия РАН. Физика атмосферы и океана. 2007. Т. 43. № 6. С. 773-782.
  4. 4. Вакуленко Н.В., Котляков В.М., Монин А.С., Сонечкин Д.M. Симметрия ледниковых циклов позднего плейстоцена по данным станций «Восток» и «Купол С» в Антарктике // Доклады Академии наук. 2005. Т. 407. № 1. С. 111-114.
  5. 5. Вакуленко Н.В., Котляков В.М., Сонечкин Д.М. Об увеличении изменчивости глобального климата примерно за 400 тыс. лет до настоящего времени // Доклады Академии наук. 2014. Т. 456. № 5. С. 600-603. https://doi.org/10.7868/S0869565214170277
  6. 6. Barth A.M., Clark P.U., Bill N.S., He F., Pisias N.G. Climate evolution across the Mid-Brunhes Transition // Climate of the Past. 2018. V. 14. P. 2071-2087. https://doi.org/10.5194/cp-14-2071-2018
  7. 7. Berger W.H., Wefer G. On the dynamics of the ice ages: stage-11 paradox, mid-Brunhes climate shift, and 100-ky cycle // Earth’s Climate and Orbital Eccentricity: the Marine Isotope Stage 11 Question. 2003. V. 137. P. 41-59. https://doi.org/10.1029/137GM04
  8. 8. Crucifix M., Loutre F., Berger A. The Climate Response to the Astronomical Forcing // Space Science Reviews. 2007. V. 125 (1-4). P. 213-226. https://doi.org/10.1007/978-0-387-48341-2_17
  9. 9. Hobart B., Lisiecki L.E., Rand D., Lee T., Lawrence C.E. Late Pleistocene 100-kyr glacial cycles paced by precession forcing of summer insolation // Nature Geoscience. 2023. V. 16. P. 717-722. https://doi.org/10.1038/s41561-023-01235-x
  10. 10. Imbrie J., Imbrie J.Z. Modelling the climatic response to orbital variations // Science. 1980. V. 207. P. 943-953.
  11. 11. Ivashchenko N.N., Kotlyakov V.M., Sonechkin D.M., Vakulenko N.V. On bifurcations inducing glacial cycle lengthening during pliocene/pleistocene epoch // International Journ. of Bifurcation and Chaos. 2014. V. 24. № 8. 1440018. https://doi.org/10.1142/S0218127414400185
  12. 12. Ivashchenko N.N., Kotlyakov V.M., Sonechkin D.M., Vakulenko N.V. On the nature of the Pliocene / Pleistocene glacial cycle lengthening // Global Perspectives on Geography. 2013. V. 1. P. 9-20.
  13. 13. Kawamura K, Aoki S., Nakazawa T., Abe-Ouchi A., Saito F. Timing and duration of the last five interglacial periods from an accurate age model of the Dome Fuji Antarctic ice core // American Geophysical Union, Fall Meeting. 2010. Abstract ID PP43D-04.
  14. 14. Laskar J., Joutel F., Gastineau M., Correia A.C.M., Levrard B. A long-term numerical solution for the insolation quantities of the Earth // Astronomy and Astrophysics. 2004. V. 428. P. 261-285.
  15. 15. Lisiecki L.E., Raymo M.E. A Pliocene-Pleistocene stack of 57 globally distributed bentic δ18O records // Paleoceanology. 2005. V. 20. PA1003. https://doi.org/10.1029/2004PA001071
  16. 16. Loutre M.F., Berger A. Marine Isotope Stage 11 as an analogue for the present interglacial // Global and Planetary Change. 2003. V. 36. № 3. P. 209-217. https://doi.org/10.1016/S0921-8181 (02)00186-8
  17. 17. McManus J.F., Oppo D.W., Cullen J.L. Marine isotope stage 11 (MIS 11): analog for Holocene and future climate? In: A.W. Droxler, R.Z. Poore, L.H. Burckle. Earth’s Climate and Orbital Eccentricity: the Marine Isotope Stage 11. Question. 2003. V. 137. P. 69-85.
  18. 18. Rial J.A. Pacemaking the ice ages by frequency modulation of Earth’s orbital eccentricity // Science. 1999. V. 285. P. 564-568.
  19. 19. Snyder C. Evolution of global temperature over the past two million years // Nature. 2016. V. 38. P. 226-228. https://doi.org/10.1038/nature19798
  20. 20. Talento S., Ganopolski A. Reduced-complexity model for the impact of anthropogenic CO2 emissions on future glacial cycles // Earth System Dynamics. 2021. V. 12. P. 1275-1293. https://doi.org/10.5194/esd-12-1275-2021
  21. 21. Tzedakis P.C., Channell J.E.T., Hodell D.A., Kleiven H.F., Skinne L.C. Determining the natural length of the current interglacial // Nature Geoscience. Letters. 2012a. V. 5. Is. 2. P. 138-141. https://doi.org/10.1038/NGEO1358
  22. 22. Tzedakis P.C., Crucifix M., Mitsui T., Wolff E.W. A simple rule to determine which insolation cycles lead to interglacials // Nature. 2017. V. 542. Is. 7642. P. 427-432. https://doi.org/10.1038/nature21364
  23. 23. Tzedakis P.C., Hodell D.A., Nehrbass-Ahles C., Mitsui T., Wolff E.W. Marine Isotope Stage 11c: An unusual // Quaternary Science Reviews. 2022. V. 284. 107493. https://doi.org/10.1016/j.quascirev.2022.107493
  24. 24. Tzedakis P.C. The MIS 11 - MIS 1 analogy, southern European vegetation, atmospheric methane and the “early anthropogenic hypothesis” // Climate of the Past. 2010. V. 6. P. 131-144. https://doi.org/10.5194/cp-6-131-2010
  25. 25. Tzedakis P.C., Wolff E.W., Skinner L.C., Brovkin V., Hodell D.A., McManus J.F., Raynaud D. Can we predict the duration of an interglacial? // Climate of the Past. 2012b. V. 8. P. 1473-1485. https://doi.org/10.5194/cp-8-1473-2012
  26. 26. Tziperman E., Gildor H. On the mid-Pleistocene transition to 100-kyr glacial cycles and the asymmetry between glaciation and deglaciation times // Paleoceanography. 2003. V. 18. № 1. 1001. https://doi.org/10.1029/2001PA000627
  27. 27. Tziperman E., Raymo M.E., Huybers P., Wunsch C. Consequences of pacing the Pleistocene 100-kyr ice ages by nonlinear phase locking to Milankovitch forcing // Paleoceanography. 2006. V. 21. PA4206. https://doi.org/10.1029/2005PA0012415
  28. 28. Witkowski C.R., von der Heydt A.S., Valdes P.J., van der Meer M.T.J., Schouten S., Sinninghe Damsté J.S. Continuous sterane and phytane δ13C record reveals a substantial pCO2 decline since the mid-Miocene // Nature Communications. 2024. V. 15. № 1. 5192. https://doi.org/10.1038/s41467-024-47676-9
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library