RAS Earth ScienceЛёд и Снег Ice and Snow

  • ISSN (Print) 2076-6734
  • ISSN (Online) 2412-3765

Multiyear Variability of Aufeis Area in the Selenga River Basin and Its Determining Hydrometeorological Factors

PII
S24123765S2076673425020114-1
DOI
10.7868/S2412376525020114
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 65 / Issue number 2
Pages
342-356
Abstract
Aufels are widespread in the permafrost zone, including the Selenga River basin. They are considered as indicators of dynamic groundwater reserves and often cause damage to settlements and infrastructure. In this study, a representative set of aufels in the Selenga River basin was compiled based on a previously developed GIS dataset. Landsat and Sentinel-2 satellite images for 1990-2024, acquired immediately after snowmelt, were used to estimate the aufels area and its multi-year changes. Changes in aufels area were compared with meteorological parameters derived from the weather station data and ERA5 reanalysis. We found that the average aufels area decreases by 3.5% per 10 years. At the same time, interannual variations of the area of individual aufels are generally poorly correlated. The aufels area has a negative correlation with air temperature in December, March and April, as cold weather in these months favours increase of ice-covered area. A significant increase in air temperature in April in recent decades may be one of the reasons for the overall decrease in the aufels area. A correlation has also been found with the amount of precipitation in the previous year and particularly in the period from June to September. The largest aufels area has been observed in 1995-1996, after 1993-1994 which was the wettest year of the period. The lowest aufels area corresponds to the driest years 2014-2016. On average, the meteorological variables explain 52% of the interannual variability of the aufels area, but for individual aufels this value ranges from 7 to 63%. Such differences are due to the different origin of the considered aufels and possible changes in the hydrogeological conditions, the identification of which requires field studies.
Keywords
наледи многолетние изменения спутниковые снимки Landsat и Sentinel-2 реанализ ERA5 осадки температура воздуха расход воды корреляции
Date of publication
18.04.2025
Year of publication
2025
Number of purchasers
0
Views
10

References

  1. 1. Алексеев В.Р. Многолетняя изменчивость родниковых наледей-тарынов // Лёд и Снег. 2016. Т. 56. № 1. С. 73-93. https://doi.org/10.15356/2076-6734-2016-1-73-92
  2. 2. Алексеев В.Р., Горин В.В., Котов С.В. Наледи-тарыны Северной Чукотки // Лёд и Снег. 2011. № 4 (116). С. 85-93.
  3. 3. Алексеев В.Р., Макарьева О.М., Шихов А.Н., Нестерова Н.В., Осташов А.А., Землянскова А.А. Атлас гигантских наледей-тарынов Северо-Востока России / Ред. В.В. Шепелев, М.Н. Железняк. Новосибирск: Сибирское отделение РАН, 2021. 302 с.
  4. 4. Гармаев Е.Ж., Пьянков С.В., Аюржанаев А.А. Гидро­экологическая безопасность бассейна реки Селенга. М.: ООО «ПринтЛето», 2023. 208 с.
  5. 5. Григорьев В.Ю., Фролова Н.Л., Киреева М.Б., Степаненко В.М. Пространственно-временная изменчивость ошибки воспроизведения осадков реанализом ERA5 на территории России // Изв. РАН. Сер. географическая. 2022. № 86 (3). С. 435-446. https://doi.org/10.31857/S2587556622030062
  6. 6. Марков М.Л., Василенко Н.Г., Гуревич Е.В. Наледи зоны БАМ: Экспедиционные исследования. СПб.: Нестор-История, 2016. 320 с.
  7. 7. Миллионщикова Т.Д. Моделирование и предвычисление многолетних изменений стока р. Селенги. Дисс. на соиск. уч. степ. канд. геогр. наук. М.: Ин-т водных проблем РАН, 2019. 133 с.
  8. 8. Соколов Б.Л. Наледи и речной сток. Л.: Гидрометеоиздат, 1975. 190 с.
  9. 9. Черных В.Н., Гармаев Е.Ж. Мониторинговые исследования наледей в бассейнах малых рек центральной части Селенгинского среднегорья // Проблемы региональной экологии 2023. № 2. С. 36-41. https://doi.org/10.24412/1728-323X-2023-2-36-41
  10. 10. Brombierstäudl D., Schmidt S., Nüsser M. Distribution and relevance of aufeis (icing) in the Upper Indus Basin // Science of the Total Environment. 2021. V. 780. No. 146604. https://doi.org/10.1016/j.scitotenv.2021.146604
  11. 11. Brombierstäudl D., Schmidt S., Nüsser M. Spatial and temporal dynamics of aufeis in the Tso Moriri basin, eastern Ladakh, India // Permafrost and Periglacial Processes. 2023. V. 34 (1). P. 81-93. https://doi.org/10.1002/ppp.2173
  12. 12. Chernykh V., Shikhov A., Ayurzhanaev A., Sodnomov B., Tsydypov B., Zharnikova M., Dashtseren A. Icings in the Selenga River basin // Journ. of Maps. 2024. V. 20 (1). P. 1-10. https://doi.org/10.1080/17445647.2024.2340994
  13. 13. Ensom T.P., Makarieva O.M., Morse P.D., Kane D.L., Alekseev V.R., Marsh P. The Distribution and Dynamics of Aufeis in Permafrost Regions // Permafrost and Periglacial Processes. 2020. V. 31 (3). P. 383-395. https://doi.org/10.1002/ppp.2051
  14. 14. Froehlich W., Slupik J. River icings and fluvial activity in extreme continental climate: Khangai Mountains, Mongolia / In: Proceedings of the Fourth Canadian Permafrost Conference. Ottawa: National Research Council of Canada, 1982. P. 203-211.
  15. 15. Frolova N.L., Belyakova P.A., Grigoriev V.Y., Sazonov A.A., Zotov L.V., Jarsjö J. Runoff fluctuations in the Selenga River Basin // Regional Environmental Change. 2017. V. 17 (7). P. 1965-1976. https://doi.org/10.1007/s10113-017-1199-0
  16. 16. Gagarin L., Wu Q., Cao W., Jiang G. Icings of the Kunlun Mountains on the Northern Margin of the Qinghai-Tibet Plateau, Western China: Origins, Hydrology and Distribution // Water. 2022. V. 14 (15). No. 2396. https://doi.org/10.3390/w14152396
  17. 17. Hall D.K., Riggs G.A., Salomonson V.V. Development of methods for mapping global snow cover using Mode­rate Resolution Imaging Spectroradiometer (MODIS) data // Remote Sensing of Environment. 1995. V. 54. P. 127-140. https://doi.org/10.1016/0034-4257 (95)00137-P
  18. 18. Hall D.K., Roswell C. The origin of water feeding icings on the eastern North Slope of Alaska // Polar Record. 1981. V. 20 (128). P. 433-438. https://doi.org/10.1017/S0032247400003648
  19. 19. Harden D., Barnes P., Reimnitz E. Distribution and character of naleds in northeastern Alaska // Arctic. 1977. V. 30 (1). P. 1-30. https://doi.org/10.14430/arctic2681
  20. 20. Hersbach H., Bell B., Berrisford P. The ERA5 global reanalysis // Quarterly Journal of the Royal Meteorological Society. 2020. V. 146. № 730. P. 1999-2049. https://doi.org/10.1002/qj.3803
  21. 21. Makarieva O.M., Shikhov A.N., Ostashov A.A., Nesterova N.V. Historical and recent aufeis in the Indigirka River basin (Russia) // Earth System Science Data. 2019. V. 11 (1). P. 409-420. https://doi.org/10.5194/essd-11-409-2019
  22. 22. Makarieva O., Nesterova N., Shikhov A., Zemlianskova A., Luo D., Ostashov A., Alexeev V. Giant Aufeis - Unknown Glaciation in North-Eastern Eurasia According to Landsat Images 2013-2019 // Remote Sensing. 2022. V. 14 (17). No. 4248. https://doi.org/10.3390/rs14174248
  23. 23. Morse P.D., Wolfe S.A. Geological and meteorological controls on icing (aufeis) dynamics (1985 to 2014) in subarctic Canada // Journ. of Geophysical Research: Earth Surface. 2015. V. 120. P. 1670-1686. https://doi.org/10.1002/2015JF003534
  24. 24. Muñoz-Sabater J., Dutra E., Agustí-Panareda A., Albergel C., Arduini G., Balsamo G., Boussetta S., Choulga M., Harrigan S., Hersbach H., Martens B., Miralles D.G., Piles M., Rodríguez-Fernández N.J., Zsoter E., Buontempo C., Thépaut J.N. ERA5-land: A state-of-the-art global reanalysis dataset for land applications // Earth System Science Data. 2021. V. 13 (9). P. 4349-4383. https://doi.org/10.5194/essd-13-4349-2021
  25. 25. National Agency Meteorology and the Environmental Monitoring // Электронный ресурс. URL: https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily (Дата обращения: 20.12.2024).
  26. 26. National Centers for Environmental Information. Global Historical Climatology Network daily (GHCNd) // Электронный ресурс. URL: https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily (Дата обращения: 20.12.2024).
  27. 27. Obu J., Westermann S., Bartsch A., Berdnikov N., Christiansen H.H., Dashtseren A., Delaloye R., Elberling B., Etzelmüller B., Kholodov A., Khomutov A., Kääb A., Leibman M.O., Lewkowicz A.G., Panda S.K., Romanovsky V., Way R.G., Westergaard-Nielsen A., Wu T., Yamkhin J., Zou D. Northern Hemisphere permafrost map based on TTOP modelling for 2000-2016 at 1 km2 scale // Earth-Science Reviews. 2019. V. 193. P. 299-316. https://doi.org/10.1016/j.earscirev.2019.04.023
  28. 28. Temuujin Kh., Dashtseren A. Ulambayar G. Icing dynamic changes in Bayanzurkh district, Ulaanbaatar, Mongolia. The 2nd International Conference on Environmental Science and Technology, 2019. // Электронный ресурс. URL: http://portal.igg.ac.mn/dataset/24584791-238d-4e34-a046-661f05a0f1f6/resource/73a84bad-cc91-4136-aacd-dc291cd09cd6/download/temuujin_est2019_abstract.pdf (Дата обращения: 20.12.2024).
  29. 29. Yoshikawa K., Hinzman L.D., Kane D.L. Spring and aufeis (icing) hydrology in Brooks Range, Alaska // Journ. of Geophys. Reserarch. 2007. V. 12. G04S43. https://doi.org/10.1029/2006JG000294
  30. 30. Zemlianskova A., Makarieva O., Shikhov A., Alekseev V., Nesterova N., Ostashov A. The impact of climate change on seasonal glaciation in the mountainous permafrost of North-Eastern Eurasia by the example of the giant Anmangynda aufeis // CATENA. 2023. V. 233 No. 107530. https://doi.org/10.1016/j.catena.2023.107530
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library